

Psy 420 Andrew Ainsworth

Topics in WS designs

- o Types of Repeated Measures Designs
- o Issues and Assumptions
- o Analysis
	- Traditional One-way
	- Regression One-way

- o Each participant is measured more than once
- o Subjects cross the levels of the IV
- o Levels can be ordered like time or distance
- o Or levels can be un-ordered (e.g. cases take three different types of depression inventories)

- o WS designs are often called repeated measures
- o Like any other analysis of variance, a WS design can have ^a single IV or multiple factorial IVs
	- E.g. Three different depression inventories at three different collection times

- o Repeated measures designs require less subjects (are more efficient) than BG designs
	- A 1-way BG design with 3 levels that requires 30 subjects
		- The same design as a WS design would require 10 subjects
	- Subjects often require considerable time and money, it's more efficient to use them more than once

o WS designs are often more powerful

- Since subjects are measured more than once we can better pin-point the individual differences and remove them from the analysis
- In ANOVA anything measured more than once can be analyzed, with WS subjects are measured more than once
- \bullet Individual differences are subtracted from the error term, therefore WS designs often have substantially smaller error terms

o o | Types of WS designs

o Time as a variable

- Often time or trials is used as a variable
- The same group of subjects are measured on the same variable repeatedly as a way of measuring change
- \bullet Time has inherent order and lends itself to trend analysis
- By the nature of the design, independence of errors (BG) is guaranteed to be violated

Types of WS designs

- \overline{O} Matched Randomized Blocks
	- 1. Measure all subjects on ^a variable or variables
	- 2. Create "blocks $\mathrm{^{\textcolor{blue}{\textcolor{black}{\ddots}}}}$ of subjects so that there is one subject in each level of the IV and they are all equivalent based on step 1
	- 3. Randomly assign each subject in each block to one level of the IV

- \bullet Big issue in WS designs
	- \bullet Carryover effects
		- • Are subjects changed simple by being measured?
		- \bullet Does one level of the IV cause people to change on the next level without manipulation?
		- \bullet Safeguards need to be implemented in order to protect against this (e.g. counterbalancing, etc.)

- o Normality of Sampling Distribution
	- In factorial WS designs we will be creating a number of different error terms, may not meet +20 DF
	- Than you need to address the distribution of the sample itself and make any transformations, etc.
	- You need to keep track of where the test for normality should be conducted (often on combinations of levels)
	- Example

- \bullet Independence of Errors
	- \bullet This assumption is automatically violated in ^a WS design
	- \bullet A subject's score in one level of the IV is automatically correlated with other levels, the close the levels are (e.g. in time) the more correlated the scores will be.
	- \bullet Any consistency in individual differences is removed from what would normall y be the error term in a BG design

o Sphericity

- \bullet • The assumption of Independence of errors is replaced by the assumption of Sphericity when there are more than two levels
- \bullet Sphericity is similar to an assumption of homogeneity of covariance (but a little different)
- \bullet The variances of difference scores between levels should be equal for all pairs of levels

o Sphericity

- The assumption is most likely to be violated when the IV is time
	- • As time increases levels closer in time will have higher correlations than levels farther apart
	- \bullet The variance of difference scores between levels increase as the levels get farther apart

o Additivity

- \bullet This assumption basically states that subjects and levels don't interact with one another
- \bullet • We are going to be using the A x S variance as error so we are assuming it is just random
- \bullet • If A and S really interact than the error term is distorted because it also includes systematic variance in addition to the random variance

- \bullet Additivity
	- \bullet The assumption is literally that difference scores are equal for all cases
	- \bullet This assumes that the variance of the difference scores between pairs of levels is zero
	- \bullet • So, if additivity is met than sphericity is met as well
	- \bullet Additivity is the most restrictive assumption but not likely met

o Compound Symmetry

- This includes Homogeneity of Variance and Homogeneity of Covariance
- Homogeneity of Variance is the same as before (but you need to search for it a little differently)
- Homogeneity of Covariance is simple the covariances (correlations) are equal for all pairs of levels.

- o If you have additivity or compound symmetry than sphericity is met as well
	- \bullet In additivity the variance are 0, therefore equal
	- In compound symmetry, variances are equal and covariances are equal
- o But you can have sphericity even when additivity or compound symmetry is violated (don't worry about the details)
- o The main assumption to be concerned with is sphericity

- o Sphericity is usually tested by a combination of testing homogeneity of variance and Mauchly's test of sphericity (SPSS)
	- If violated (Mauchly's), first check distribution of scores and transform if non-normal; then recheck.
	- If still violated ...

- \bullet If sphericity is violated:
	- $\,$ Use specific comparisons instead of the omnibus ANOVA
	- 2. Use an adjusted F-test (SPSS)
		- •• Calculate degree of violation (ε)
		- \bullet Then adjust the DFs downward (multiplies the DFs by a number smaller than one) so that the Ftest is more conservative
		- \bullet Greenhouse-Geisser, Huynh-Feldt are two approaches to adjusted F (H-F preferred, more conservative)

- \bullet If sphericity is violated:
	- 3. Use ^a multivariate approach to repeated measures (take Psy 524 with me next semester)
	- 4. Use a maximum likelihood method that allows you to specify that the variancecovariance matrix is other than compound symmetric (don't worry if this makes no sense)

Analysis – 1-way WS

o Example

Analysis – 1-way WS

- o The one main difference in WS designs is that subjects are repeatedly measured.
- o Anything that is measured more than once can be analyzed as a source of variability
- o So in a 1-way WS design we are actually going to calculate variability due to subjects

 $\,$ o So, SS $_{\rm T}$ = SS $_{\rm A}$ + SS $_{\rm S}$ + SS $_{\rm A \, x \, S}$

 \bullet We don't really care about analyzing the SS_S but it is calculated and removed from the error term

$\bullet \bullet \bullet$ Sums of Squares

o The'total variability can be partitioned into Between Groups (e.g. measures), Subjects and Error Variability

$$
\sum \left(Y_{ij} - \overline{Y}_{..}\right)^2 = \sum n_j \left(\overline{Y}_{..} - \overline{Y}_{..}\right)^2 + g \sum \left(\overline{Y}_{i.} - \overline{Y}_{..}\right)^2 +
$$

+
$$
\left[\sum \left(Y_{ij} - \overline{Y}_{.j}\right)^2 - g \sum \left(\overline{Y}_{i.} - \overline{Y}_{..}\right)^2\right]
$$

$$
SS_{Total} = SS_{Between Groups} + SS_{\text{Subjects}} + SS_{\text{Error}}
$$

$$
SS_T = SS_{BG} + SS_S + SS_{\text{Error}}
$$

Analysis – 1-way WS

- o Traditional Analysis
	- In WS designs we will use s instead of n

$$
\bullet DF_T = N - 1 \text{ or as } -1
$$

$$
\bullet DF_A = a - 1
$$

$$
\bullet DF_{S} = s - 1
$$

•
$$
DF_{A \times S} = (a - 1)(s - 1) = as - a - s + 1
$$

- Same drill as before, each component goes on top of the fraction divided by what's left
- 1s get T²/as and "as" gets Σ Y²

Analysis – 1-way WS

| Computational Analysis - Example

Analysis – 1-way WS

o Traditional Analysis $SS_A = \frac{\sum (\sum A_j)^2}{2} - \frac{T^2}{2}$ $\sum \Bigl(\sum S^{\vphantom{\dagger}}_i \Bigr)^2 - T^2$ *s as* $\left(\sum A_{j} \right)^{2} = \sum \Bigl(\sum S_{i} \Bigr)^{2} = T^{2}$ *S* $SS_{\rm s} = \frac{\sqrt{2\pi} \sqrt{2}}{2}$ *a asA s* 1 3 3 ∑ $\sum_{i}^{\infty} \left(\sum A_{i} \right)^{2} \sum \left(\sum S_{i} \right)^{2}$ $\,$ $\,$ $\,$ $T^{\,2}$ *AxS* D_i) T $SS_{\text{A} \times \text{S}} = \sum Y^2 - \frac{\sum (Z - Y)^2}{\sum (Z - Y)^2} - \frac{\sum (Z - Y)^2}{\sum (Z - Y)^2} + \frac{\sum (Z - Y)^2}{\sum (Z - Y)^2}$ *sa a as* $\sum Y^2 - \frac{\sum (\sum A_j)^2}{\sum} - \frac{\sum (\sum S_i)^2}{\sum} +$ *T T* $SS_r = \sum Y^2 - Y^2$ = $\sum Y^2$ $-$

$$
as
$$

Analysis – 1-way WS

 \blacksquare

o Traditional Analysis - Example

Analysis – 1-way WS

o Traditional Analysis - example

Analysis – 1-way WS

o Regression Analysis

- With a 1-way WS design the coding through regression doesn't change at all concerning the IV (A)
- \bullet You need a 1 predictors to code for A
- The only addition is a column of sums for each subject repeated at each level of A to code for the subject variability

o Regression Analysis

$$
SS_Y = \sum Y^2 - \frac{(\sum Y)^2}{N} = 325 - \frac{63^2}{15} = 60.4
$$

$$
SS(X_1) = \sum X_1^2 - \frac{(\sum X_1)^2}{N} = 10 - \frac{0^2}{15} = 10
$$

$$
SS(X_2) = \sum X_2^2 - \frac{(\sum X_2)^2}{N} = 30 - \frac{0^2}{15} = 30
$$

$$
SS(X_3) = \sum X_3^2 - \frac{(\sum X_3)^2}{N} = 2469 - \frac{189^2}{15} = 87.6
$$

$$
SP(YX_1) = \sum YX_1 - \frac{(\sum Y)(\sum X_1)}{N} = 20 - \frac{(63)(0)}{15} = 20
$$

\n
$$
SP(YX_2) = \sum YX_2 - \frac{(\sum Y)(\sum X_2)}{N} = 6 - \frac{(63)(0)}{15} = 6
$$

\n
$$
SP(YX_3) = \sum YX_3 - \frac{(\sum Y)(\sum X_3)}{N} = 823 - \frac{(63)(189)}{15} = 29.2
$$

$$
SS_A = SS(\text{reg. } X_1) + SS(\text{reg. } X_2) = \frac{[SP(YX_1)]^2}{SS(X_1)} + \frac{[SP(YX_2)]^2}{SS(X_2)} = \frac{(20)^2}{10} + \frac{(6)^2}{30} = 41.2
$$

\n
$$
SS_S = SS(\text{reg. } X_3) = \frac{[SP(YX_3)]^2}{SS(X_3)} = \frac{(29.2)^2}{87.6} = 9.7
$$

\n
$$
SS_T = SS_T
$$

\n
$$
= SS_T - SS_A - SS_S = 60.4 - 41.2 - 9.7 = 9.5
$$

Analysis – 1-way WS

o Regression Analysis

• Degrees of Freedom

•
$$
df_A = #
$$
 of predictors = $a - 1$

•
$$
df_S = #
$$
 of subjects $-1 = s - 1$

•
$$
df_T = #
$$
 of scores $-1 =$ as -1

•
$$
df_{AS} = df_T - df_A - df_S
$$